

## Guidelines for the Prevention and Treatment of Opportunistic Infections in Adults and Adolescents with HIV.

Downloaded from <a href="https://aidsinfo.nih.gov/guidelines">https://aidsinfo.nih.gov/guidelines</a> on 8/31/2020

Visit the AIDSinfo website to access the most up-to-date guideline.

Register for e-mail notification of guideline updates at <a href="https://aidsinfo.nih.gov/e-news">https://aidsinfo.nih.gov/e-news</a>.

# **Human Herpesvirus-8 Disease** (Last updated May 29, 2018; last reviewed June 26, 2019)

## **Epidemiology**

The seroprevalence of human herpesvirus-8 (HHV-8)—also known as Kaposi sarcoma-associated herpesvirus (KSHV)—varies worldwide and is estimated to be 1% to 5% in the general U.S. population<sup>1,2</sup> compared with 10% to 20% in certain Mediterranean countries and 30% to 80% in parts of sub-Saharan Africa.<sup>3</sup> In the United States, men who have sex with men (MSM) and persons with HIV infection are at increased risk for HHV-8 infection. Among MSM without HIV infection, the seroprevalence ranges from 13% to 20% and HHV-8 seroprevalence increases to 30% to 35% among MSM with HIV infection.<sup>4-6</sup> Injection drug use may also be a risk factor for HHV-8 seropositivity,<sup>7</sup> although this association has not been consistently observed.<sup>8</sup>

HHV-8 is etiologically associated with all forms of Kaposi sarcoma (KS) including classic, endemic, transplant-related, and AIDS-related, as well as rare neoplastic disorders (primary effusion lymphoma [PEL] and solid organ variants) and the lymphoproliferative disorder known as multicentric Castleman's disease (MCD). Although the precise pathogenesis for these tumors remains unclear, infection with HHV-8 precedes their development. Patients who are HHV-8 seropositive and exhibit HHV-8 viremia are at increased risk (approximately nine-fold) for developing KS relative to those without HHV-8 viremia. HHV-8 viremia typically accompanies symptomatic episodes of multicentric Castleman's disease.

The overall prevalence of KS in the U.S. was as high as 30% among patients with AIDS prior to the advent of effective antiretroviral therapy (ART). <sup>12</sup> The incidence of KS rose steeply in the United States between 1981 and 1987 and subsequently gradually declined. <sup>13</sup> Reasons for this reduction in KS incidence prior to the widespread availability of ART include the deaths of patients with advanced AIDS who were most susceptible to KS, and the increasing use by individuals with HIV individuals of antiviral drugs that may have had activity against HHV-8 (zidovudine for the treatment of HIV; ganciclovir, foscarnet, and cidofovir use for treatment of CMV disease). <sup>14</sup> Supporting the latter hypothesis, observational studies indicate that patients receiving ganciclovir or foscarnet (but not acyclovir) develop KS at a reduced rate. <sup>15-18</sup> A more marked reduction in KS incidence occurred beginning in 1996, shortly after the introduction of protease inhibitor-containing ART in the U.S. Despite these declines, KS is among the most common cancers among the AIDS population in the U.S., <sup>19</sup> and HIV infection increases the risk of KS several thousand fold even in the ART era. <sup>20</sup> Notably, KS is a common cancer in many countries in sub-Saharan Africa, <sup>21</sup> fueled in part by the HIV pandemic, and incidence has not declined in regions of sub-Saharan Africa where ART coverage is increasing but incomplete. <sup>22,23</sup> PEL and MCD remain rare relative to KS. <sup>24,25</sup>

KS and PEL are described most frequently among individuals with HIV exhibiting advanced immunosuppression (CD4 T lymphocyte [CD4] cell counts <200 cells/mm³), although they may occur at any CD4 cell count. Recent reports of KS occurring at higher CD4 cell counts in the United States<sup>26,27</sup> suggest that clinicians caring for patients with HIV should be vigilant for the clinical manifestations of KS in patients at risk of HHV-8 infection, regardless of CD4 cell count. MCD may arise at any CD4 cell count.

#### **Clinical Manifestations**

Most individuals latently infected with HHV-8 are asymptomatic.<sup>28</sup> Immunocompetent children and organ transplant recipients infected with HHV-8 may develop a primary infection syndrome consisting of fever, rash, lymphadenopathy, bone marrow failure, and occasional rapid progression to KS.<sup>29,30</sup> KS manifestations vary widely, but most patients have nontender, hyperpigmented, macular or nodular skin lesions. Oral lesions occur in approximately one-third of patients<sup>31</sup> and are predictors of pulmonary involvement and less favorable treatment outcomes.<sup>32-34</sup> Lymphatic involvement is also common and may lead to debilitating lower extremity edema. Involvement of internal viscera occurs in up to 50% of cases and may be difficult

to diagnose. Patients with visceral involvement may be asymptomatic, or manifest with shortness of breath, painless rectal bleeding or melena, and other non-specific pulmonary and gastrointestinal symptoms.<sup>35-40</sup>

PEL characteristically presents with effusions isolated within the pleural, pericardial, or abdominal cavities,<sup>41</sup> but mass lesions and "extracavitary" disease within skin, hematopoietic organs, and the gastrointestinal tract have been described.<sup>42-44</sup> MCD routinely manifests with systemic symptoms including fever and night sweats, and findings on examination including generalized adenopathy, fever and hepatosplenomegaly.<sup>24,45</sup> MCD may mimic other inflammatory conditions including sepsis, with hypotension, clinical evidence of a systemic inflammatory response, and progression to multi-organ failure.<sup>24,46,47</sup>

Another HHV-8- associated condition, the KSHV inflammatory cytokine syndrome (KICS), has been more recently described. Patients with this syndrome display MCD-like inflammatory symptoms, but do not have pathological findings of MCD. Patients with KICS are frequently critically ill and demonstrate marked elevations in IL-6 and IL-10, as well as high plasma HHV-8 viral loads. KICS may contribute to the inflammatory symptoms seen in some patients with severe KS or PEL, and there may be significant clinical overlap between these conditions.

### **Diagnosis**

The diagnoses of KS, MCD, and PEL depend on cytologic and immunologic cell markers, as well as histology. Clinical diagnosis alone is not sufficient for KS, and tissue examination is needed to confirm the diagnosis. <sup>51,52</sup> Confirmation of these diagnoses is achieved through immunohistochemical staining of tumors with antibodies recognizing the HHV-8-encoded latency-associated nuclear antigen (LANA). <sup>53,54</sup> While not commercially available, diagnoses may also be confirmed utilizing polymerase chain reaction (PCR) to identify HHV-8 DNA within tumor tissue. <sup>53,54</sup> Use of serologic testing for HHV-8 antibodies is currently not indicated for either diagnostic testing or routine screening for HHV-8-related illnesses due to lack of standardization and poor sensitivity and specificity of these assays. <sup>55</sup> In addition, use of PCR to quantify HHV-8 in the peripheral blood has no established role in the diagnosis of KS, MCD, or PEL. <sup>11</sup>

## **HHV-8 Transmission/Preventing Exposure**

The mode(s) of transmission of HHV-8 remains unclear, but epidemiologic and virologic data suggest that saliva is a source of infectious virus and may be an important route of transmission. Asymptomatic HHV-8 infection is often associated with HHV-8 shedding in the saliva and occasional shedding in genital secretions. Asymptomatic HHV-8 infection is often associated with HHV-8 shedding in the U.S., HHV-8 was detected by PCR in the saliva of 39% of participants and on more than 35% of days on which samples were obtained. HHV-8 shedding is also common among persons in sub-Saharan Africa. Among HHV-8-infected adults without KS in Uganda, 22% had HHV-8 DNA detected in saliva and 3% in genital secretions; HHV-8 was also detected in saliva of 68% of commercial sex workers in Kenya. Based on these observations, viral shedding may result in HHV-8 transmission to uninfected partners through behaviors associated with exposure to saliva or genital secretions. HHV-8 transmission through blood transfusion has been reported in Uganda, where HHV-8 is endemic; however, studies from the U.S. and Western Europe have not found evidence to support HHV-8 transmission through blood transfusion.

Recommendations to prevent exposure to HHV-8 do not yet exist; screening patients for HHV-8 serostatus or behavioral modifications to limit potential exposures have not been validated and are not currently recommended.

## **Preventing Disease**

Despite observational evidence supporting a role for anti-HHV-8 therapy in preventing the development of KS, the toxicity of current anti-HHV-8 treatments outweighs the potential use for prophylaxis (AIII). Because strong risk factors for the development of KS in HIV-positive individuals include both low CD4-

positive T cell count<sup>62</sup> and uncontrolled viremia,<sup>63</sup> early initiation of ART is likely to be the most effective measure for the prevention of KS (**AII**). Although epidemiologic data are somewhat conflicting, there are no antiretroviral agents which have proven clearly superior for the prevention of KS.<sup>60-65</sup> Therefore, specific classes of ART for prevention of KS or other HHV-8-associated illnesses are not recommended (**AII**).

#### **Treating Disease**

**KS:** Chemotherapy, in combination with ART, should be administered to patients with visceral involvement (**AI**) and is likely to be a useful adjunctive therapy in individuals with disseminated cutaneous KS (**BIII**). <sup>64-67</sup> Liposomal doxorubicin and paclitaxel exhibit comparable response rates and progression-free survival, although liposomal doxorubicin exhibits less high-grade toxicity relative to paclitaxel and is, therefore, generally preferred as first-line therapy (**AI**). <sup>64</sup> Paclitaxel has proven effective with relapse following treatment failure with liposomal doxorubicin. <sup>67</sup> Importantly, concurrent use of corticosteroids in patients with KS should be either avoided or used with caution and under close observation, given the potential for exacerbation of life-threatening disease, as well as an association between the use of corticosteroids and development of KS (**AIII**). <sup>68-70</sup> KS arising in the setting of organ transplantation is related to the use of corticosteroids and other non-targeted immunosuppressives, especially in geographic areas of high HHV-8 seroprevalence. <sup>71</sup> Transplant-associated KS may be effectively treated or avoided with use of immunosuppressive regimens which include drugs that inhibit the mammalian target of rapamycin (mTOR) such as rapamycin and sirolimus. <sup>71-73</sup>

The antiviral agents ganciclovir, foscarnet, and cidofovir exhibit *in vitro* activity against HHV-8.<sup>74,75</sup> Available data indicate that antivirals have limited efficacy for the treatment of KS (ganciclovir and cidofovir)<sup>76,77</sup> and HHV-8-associated hemophagocytosis (foscarnet).<sup>78,79</sup> Therefore, antiviral agents with activity against HHV-8 are not recommended for KS treatment (AII).

**PEL:** Chemotherapy, in combination with ART, should be administered to patients with PEL (**AIII**), although, given its rarity, there are limited data available from longitudinal observational series or prospective randomized clinical trials. The combination of cyclophosphamide, doxorubicin, vincristine, and prednisolone (CHOP) in combination with ART has demonstrated some benefit, albeit still limited, for PEL, and the combination of infusional etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin (EPOCH) demonstrated superior survival relative to CHOP in one pooled analysis (**BII**).<sup>80,81</sup> Rituximab may be considered for rare CD20-positive cases of PEL (**CIII**), and dose-adjusted EPOCH (DA-EPOCH) may be beneficial for some patients (**CIII**).<sup>82,83</sup> Antiviral agents, including valganciclovir or zidovudine, may also be used as adjunctive therapies, but available data are limited for this approach and additive toxicities may limit their utility (**CIII**).<sup>84-86</sup>

MCD: There are no standardized treatments for MCD, but several treatment regimens have been utilized. The use of either IV ganciclovir or oral valganciclovir are options for treatment of MCD (CII). A 3-week course of twice-daily IV ganciclovir or oral valganciclovir was associated with remissions in MCD in one report, <sup>87</sup> and a combination of valganciclovir and high-dose zidovudine has led to durable clinical remissions (CII). <sup>88</sup> Rituximab has also emerged as an important adjunctive treatment for MCD (CII), <sup>89,90</sup> although up to one-third of patients receiving rituximab may have subsequent exacerbations or emergence of KS. <sup>91,92</sup> For patients with concurrent diagnoses of KS and MCD, use of both rituximab and liposomal doxorubicin is recommended (BII). <sup>45</sup> Therapeutic monoclonal antibodies targeting either interleukin-6 (IL-6) or the IL-6 receptor have also proven effective for some patients with MCD and may be utilized in some situations (BII). <sup>93-95</sup> At this time, there is insufficient evidence to recommend monitoring IL-6 levels for diagnostic or prognostic purposes. Although corticosteroids are potentially effective as an adjunctive therapy for MCD, they should be used with caution or avoided, especially in patients with concurrent KS, given potential for exacerbation of life-threatening KS (AIII). <sup>68-70</sup>

Detailed recommendations for the treatment of HHV-8 malignancies (including chemotherapy and radiation therapy) are beyond the scope of these guidelines. Treatment should be undertaken in consultation with

an experienced specialist with appropriate guidance from both oncology and infectious disease specialists (AIII). Preferred ART to be given concurrently with chemotherapy for HHV-8 malignancies should be chosen to minimize drug-drug interactions and additive toxicities.

### Special Considerations When Starting Antiretroviral Therapy

Early initiation of ART may prevent incident KS and PEL.<sup>74,96</sup> ART that suppresses HIV replication should be administered to all patients with HIV and KS (AII), PEL (AIII), or MCD (AIII), although insufficient evidence exists to support using one ART regimen over another.

#### Monitoring of Response to Therapy and Adverse Events (Including IRIS)

Immune reconstitution inflammatory syndrome (IRIS) may occur among HHV-8-infected patients initiating ART.

KS: KS-IRIS is characterized by either first presentation of KS ("unmasking"), or paradoxical worsening of pre-existing KS following ART initiation, and can be associated with significant morbidity and mortality. Studies in the U.S. and Europe reveal that KS is the most commonly reported form of IRIS, occurring in 6% to 34% of KS patients with HIV who are initiating ART. 98,99 In sub-Saharan Africa, exacerbations of KS compatible with KS-IRIS have been reported in 18% to 61% of adults initiating ART treatment. 100-102 Risk factors for developing KS-IRIS include advanced KS tumor stage (T1), pre-treatment HIV viral load >5 log<sub>10</sub> copies/mL, detectable pre-treatment plasma HHV-8, and initiation of ART alone without concurrent chemotherapy. Treatment of KS-IRIS includes systemic chemotherapy and supportive measures. Steroids are strongly discouraged for management of KS-IRIS, as corticosteroid therapy has been associated with exacerbation of pre-existing KS in persons with HIV (AIII). 70,103

**PEL:** No data exist on the frequency with which initiation of ART complicates the course of primary effusion lymphoma.

**MCD:** A small number of patients with HIV-associated MCD have experienced clinical decompensation upon initiation of ART.<sup>104,105</sup>

Although neither the incidence nor predictors of HHV-8-associated IRIS are well-described, suppression of HIV replication and immune reconstitution are key components of therapy, and initiation of ART should not be delayed (AIII).

## **Preventing Recurrence**

Effective suppression of HIV replication with ART in patients with HIV and KS may prevent KS progression or occurrence of new lesions. Because KS is an AIDS-defining cancer, ART is indicated for all patients with active KS (AII). Suppression of HIV replication to prevent recurrence is also recommended for patients with MCD (AIII) as well as those with malignant lymphoproliferative disorders (AIII).

## **Special Considerations During Pregnancy**

The seroprevalence of HHV-8 infection among pregnant women with HIV varies by geographic area, ranging from 1.7% among U.S.-born and 3.6% among Haitian-born women in New York City to 11.6% among pregnant women from 4 other U.S. cities. <sup>106</sup> Pregnancy does not appear to affect the prevalence of antibodies to HHV-8 or the antibody levels, <sup>107</sup> although levels of HHV-8 DNA in the peripheral blood may increase late in pregnancy. <sup>108</sup> HHV-8 seropositivity does not appear to influence pregnancy outcome. Routine screening for HHV-8 by PCR or serology is not indicated for pregnant women with HIV (AIII). Antiviral therapy for HHV-8 infection in pregnancy is not recommended (AIII). Given the rarity of KS, PEL, and MCD in pregnancy and the potential toxicity of the drugs used for treatment, when these conditions occur in pregnancy, they should be managed with consultations between the obstetrician, infectious disease specialist, and oncologist. With limited disease, treatment may be deferred until after delivery. <sup>109</sup>

*In vitro* models suggest that beta-human chorionic gonadotropin induces regression of KS tumors, but clinical reports on the incidence and natural history of KS in pregnancy are conflicting. Perinatal transmission of HHV-8 occurs infrequently. Evidence supporting vertical transmission during pregnancy or the intrapartum period includes cases of KS occurring in the infant shortly after birth, higher risk for transmission with higher maternal antibody titer (and, by inference, higher maternal levels of HHV-8), and detection of similar strains of HHV-8 DNA by PCR in specimens drawn at birth from HHV-8-seropositive mothers and their infants. Data indicate increased mortality through age 24 months among infants with HIV born to HHV-8-seropositive mothers compared with HHV-8-seronegative mothers, the majority of studies document a substantially higher rate of HHV-8 seropositivity among children born to HHV-8 antibody-positive compared with HHV-8 antibody-negative women.

## Recommendations for Preventing and Treating HHV-8 Diseases—Kaposi Sarcoma (KS), Primary Effusion Lymphoma (PEL), Multicentric Castleman's Disease (MCD)

#### **Preventing Development of KS**

• Since low CD4 cell count and uncontrolled HIV viremia are strong risk factors of KS, early initiation of ART is likely to be the most effective measure for the prevention of KS (AII)

#### Mild-to-Moderate KS (localized involvement of skin and/or lymph nodes)

• Initiation or optimization of ART (AII)

#### Advanced KS (visceral and/or disseminated cutaneous disease):1

- Chemotherapy (in consultation with specialist) + ART [visceral KS (AI) or widely-disseminated cutaneous KS (BIII)].
- Liposomal doxorubicin is preferred first-line chemotherapy (AI)
- Avoid use of corticosteroids in patients with KS, including those with KS-IRIS, given the potential for exacerbation of life-threatening disease (AIII)
- Antiviral agents with activity against HHV-8 are not recommended for KS treatment (AIII).

#### PEL:

- Chemotherapy (in consultation with a specialist) (AIII) + ART (AIII)
- Oral valganciclovir or IV ganciclovir can be used as adjunctive therapy (CIII)

#### MCD:

All patients with MCD should receive ART (AIII) in conjunction with one of the therapies listed below.

Therapy Options (in consultation with a specialist, and depending on HIV/HHV-8 status, presence of organ failure, and refractory nature of disease):

- IV ganciclovir (or oral valganciclovir) +/- high dose zidovudine (CII)
- Rituximab +/- prednisone (CII)
- For patients with concurrent KS and MCD: rituximab + liposomal doxorubicin (BII)
- Monoclonal antibody targeting IL-6 or IL-6 receptor (BII)
- Corticosteroids are potentially effective as adjunctive therapy, but should be used with caution or avoided, especially in patients with concurrent KS. (AIII)

#### **Other Considerations:**

 Patients who receive rituximab or corticosteroids for treatment of MCD may experience subsequent exacerbation or emergence of KS

**Key to Acronyms:** ART = antiretroviral therapy; BID = twice daily; IV = intraveneously; KS = Kaposi sarcoma; MCD = multicentric Castleman's disease; PEL = primary effusion lymphoma; PO = orally; q(n)h = every "n" hours

<sup>1</sup> The commonly used AIDS Clinical Trials Group (ACTG) KS Staging Classification uses T(Tumor), Immune(I), and Systemic illness (S) criteria to classify patients into "Good Risk" and "Poor Risk" categories (ref Krown, JCO, 1989). "Good Risk" tumor stage criteria are used by some specialists to correspond with mild-to-moderate KS.

#### References

- Pellett PE, Wright DJ, Engels EA, et al. Multicenter comparison of serologic assays and estimation of human herpesvirus 8 seroprevalence among US blood donors. *Transfusion*. 2003;43(9):1260-1268. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/12919429">http://www.ncbi.nlm.nih.gov/pubmed/12919429</a>.
- 2. Hudnall SD, Chen T, Rady P, Tyring S, Allison P. Human herpesvirus 8 seroprevalence and viral load in healthy adult blood donors. *Transfusion*. 2003;43(1):85-90. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12519435.
- 3. Dollard SC, Butler LM, Jones AM, et al. Substantial regional differences in human herpesvirus 8 seroprevalence in sub-Saharan Africa: insights on the origin of the "Kaposi's sarcoma belt". *International Journal of Cancer Journal International du Cancer*. 2010;127(10):2395-2401. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/20143397">http://www.ncbi.nlm.nih.gov/pubmed/20143397</a>.
- 4. Pauk J, Huang ML, Brodie SJ, et al. Mucosal shedding of human herpesvirus 8 in men. *The New England Journal of Medicine*. 2000;343(19):1369-1377. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/11070101">http://www.ncbi.nlm.nih.gov/pubmed/11070101</a>.
- 5. Kedes DH, Operskalski E, Busch M, Kohn R, Flood J, Ganem D. The seroepidemiology of human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus): distribution of infection in KS risk groups and evidence for sexual transmission. *Nature Medicine*. 1996;2(8):918-924. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/8705863">http://www.ncbi.nlm.nih.gov/pubmed/8705863</a>.
- 6. Gao SJ, Kingsley L, Li M, et al. KSHV antibodies among Americans, Italians and Ugandans with and without Kaposi's sarcoma. *Nature Medicine*. 1996;2(8):925-928. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/8705864">http://www.ncbi.nlm.nih.gov/pubmed/8705864</a>.
- 7. Cannon MJ, Dollard SC, Smith DK, et al. Blood-borne and sexual transmission of human herpesvirus 8 in women with or at risk for human immunodeficiency virus infection. *The New England Journal of Medicine*. 2001;344(9):637-643. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/11228278">http://www.ncbi.nlm.nih.gov/pubmed/11228278</a>.
- 8. Renwick N, Dukers NH, Weverling GJ, et al. Risk factors for human herpesvirus 8 infection in a cohort of drug users in the Netherlands, 1985-1996. *The Journal of Infectious Diseases*. 2002;185(12):1808-1812. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/12085330">http://www.ncbi.nlm.nih.gov/pubmed/12085330</a>.
- 9. Gao SJ, Kingsley L, Hoover DR, et al. Seroconversion to antibodies against Kaposi's sarcoma-associated herpesvirus-related latent nuclear antigens before the development of Kaposi's sarcoma. *The New England Journal of Medicine*. 1996;335(4):233-241. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/8657239">http://www.ncbi.nlm.nih.gov/pubmed/8657239</a>.
- 10. Lennette ET, Blackbourn DJ, Levy JA. Antibodies to human herpesvirus type 8 in the general population and in Kaposi's sarcoma patients. *Lancet*. 1996;348(9031):858-861. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/8826812">http://www.ncbi.nlm.nih.gov/pubmed/8826812</a>.
- 11. Oksenhendler E, Carcelain G, Aoki Y, et al. High levels of human herpesvirus 8 viral load, human interleukin-6, interleukin-10, and C reactive protein correlate with exacerbation of multicentric castleman disease in HIV-infected patients. *Blood*. 2000;96(6):2069-2073. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10979949.
- 12. Beral V. The epidemiology of cancer in AIDS patients. *AIDS*. 1991;5 Suppl 2:S99-103. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/1845066">http://www.ncbi.nlm.nih.gov/pubmed/1845066</a>.
- 13. Eltom MA, Jemal A, Mbulaiteye SM, Devesa SS, Biggar RJ. Trends in Kaposi's sarcoma and non-Hodgkin's lymphoma incidence in the United States from 1973 through 1998. *Journal of the National Cancer Institute*. 2002;94(16):1204-1210. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/12189223">http://www.ncbi.nlm.nih.gov/pubmed/12189223</a>.
- 14. Casper C. Defining a role for antiviral drugs in the treatment of persons with HHV-8 infection. *Herpes: the Journal of the IHMF*. 2006;13(2):42-47. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/16895654">http://www.ncbi.nlm.nih.gov/pubmed/16895654</a>.
- 15. Martin DF, Kuppermann BD, Wolitz RA, Palestine AG, Li H, Robinson CA. Oral ganciclovir for patients with cytomegalovirus retinitis treated with a ganciclovir implant. Roche Ganciclovir Study Group. *The New England Journal of Medicine*. 1999;340(14):1063-1070. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/10194235">http://www.ncbi.nlm.nih.gov/pubmed/10194235</a>.
- 16. Ioannidis JP, Collier AC, Cooper DA, et al. Clinical efficacy of high-dose acyclovir in patients with human immunodeficiency virus infection: a meta-analysis of randomized individual patient data. *The Journal of Infectious Diseases*. 1998;178(2):349-359. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/9697714">http://www.ncbi.nlm.nih.gov/pubmed/9697714</a>.
- 17. Mocroft A, Youle M, Gazzard B, Morcinek J, Halai R, Phillips AN. Anti-herpesvirus treatment and risk of Kaposi's sarcoma in HIV infection. Royal Free/Chelsea and Westminster Hospitals Collaborative Group. *AIDS*. 1996;10(10):1101-1105. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/8874626">http://www.ncbi.nlm.nih.gov/pubmed/8874626</a>.

- ncbi.nlm.nih.gov/pubmed/8648224.
- 19. Shiels MS, Pfeiffer RM, Gail MH, et al. Cancer burden in the HIV-infected population in the United States. *Journal of the National Cancer Institute*. 2011;103(9):753-762. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/21483021">http://www.ncbi.nlm.nih.gov/pubmed/21483021</a>.
- 20. Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. *Lancet*. 2007;370(9581):59-67. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/17617273">http://www.ncbi.nlm.nih.gov/pubmed/17617273</a>.
- 21. North AB, South CD. Cancer Incidence in Antarctica (2003-2007). In: Forman D, Bray F, Brewster DH, et al., eds. Cancer Incidence in Five Continents, Vol. X. Lyon: International Agency for Research on Cancer; 2013.
- 22. Casper C. The increasing burden of HIV-associated malignancies in resource-limited regions. *Annual Review of Medicine*. 2011;62:157-170. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/20868276">http://www.ncbi.nlm.nih.gov/pubmed/20868276</a>.
- 23. Mutyaba I, Phipps W, Krantz EM, et al. A Population-Level Evaluation of the Effect of Antiretroviral Therapy on Cancer Incidence in Kyadondo County, Uganda, 1999-2008. *Journal of Acquired Immune Deficiency Syndromes*. 2015;69(4):481-486. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/25844696">http://www.ncbi.nlm.nih.gov/pubmed/25844696</a>.
- 24. Casper C. The aetiology and management of Castleman disease at 50 years: translating pathophysiology to patient care. *British Journal of Haematology*. 2005;129(1):3-17. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/15801951">http://www.ncbi.nlm.nih.gov/pubmed/15801951</a>.
- 25. Bhutani M, Polizzotto MN, Uldrick TS, Yarchoan R. Kaposi sarcoma-associated herpesvirus-associated malignancies: epidemiology, pathogenesis, and advances in treatment. *Seminars in Oncology*. 2015;42(2):223-246. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/25843728">http://www.ncbi.nlm.nih.gov/pubmed/25843728</a>.
- 26. Maurer T, Ponte M, Leslie K. HIV-associated Kaposi's sarcoma with a high CD4 count and a low viral load. *The New England Journal of Medicine*. 2007;357(13):1352-1353. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/17898112">http://www.ncbi.nlm.nih.gov/pubmed/17898112</a>.
- 27. Mani D, Neil N, Israel R, Aboulafia DM. A retrospective analysis of AIDS-associated Kaposi's sarcoma in patients with undetectable HIV viral loads and CD4 counts greater than 300 cells/mm(3). Journal of the International Association of Physicians in AIDS Care. 2009;8(5):279-285. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/19721098">http://www.ncbi.nlm.nih.gov/pubmed/19721098</a>.
- 28. Casper C, Krantz E, Selke S, et al. Frequent and asymptomatic oropharyngeal shedding of human herpesvirus 8 among immunocompetent men. *The Journal of Infectious Diseases*. 2007;195(1):30-36. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/17152006">http://www.ncbi.nlm.nih.gov/pubmed/17152006</a>.
- 29. Andreoni M, Sarmati L, Nicastri E, et al. Primary human herpesvirus 8 infection in immunocompetent children. *JAMA*. 2002;287(10):1295-1300. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/11886321">http://www.ncbi.nlm.nih.gov/pubmed/11886321</a>.
- 30. Luppi M, Barozzi P, Schulz TF, et al. Bone marrow failure associated with human herpesvirus 8 infection after transplantation. *The New England Journal of Medicine*. 2000;343(19):1378-1385. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/11070102">http://www.ncbi.nlm.nih.gov/pubmed/11070102</a>.
- 31. Nichols CM, Flaitz CM, Hicks MJ. Treating Kaposi's lesions in the HIV-infected patient. *Journal of the American Dental Association*. 1993;124(11):78-84. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/8227776">http://www.ncbi.nlm.nih.gov/pubmed/8227776</a>.
- 32. Reichart PA. Oral manifestations in HIV infection: fungal and bacterial infections, Kaposi's sarcoma. *Medical Microbiology and Immunology*. 2003;192(3):165-169. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/12684760">http://www.ncbi.nlm.nih.gov/pubmed/12684760</a>.
- 33. Rohrmus B, Thoma-Greber EM, Bogner JR, Rocken M. Outlook in oral and cutaneous Kaposi's sarcoma. *Lancet*. 2000;356(9248):2160. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/11191549">http://www.ncbi.nlm.nih.gov/pubmed/11191549</a>.
- 34. Gorsky M, Epstein JB. A case series of acquired immunodeficiency syndrome patients with initial neoplastic diagnoses of intraoral Kaposi's sarcoma. *Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics*. 2000;90(5):612-617. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/11077385">http://www.ncbi.nlm.nih.gov/pubmed/11077385</a>.
- 35. Phipps W, Ssewankambo F, Nguyen H, et al. Gender differences in clinical presentation and outcomes of epidemic Kaposi sarcoma in Uganda. *PloS One*. 2010;5(11):e13936. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/21103057">http://www.ncbi.nlm.nih.gov/pubmed/21103057</a>.
- 36. Imran TF, Al-Khateeb Z, Jung J, Peters S, Dever LL. Pulmonary Kaposi's sarcoma as the initial presentation of human immunodeficiency virus infection. *IDCases*. 2014;1(4):78-81. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/26839780">http://www.ncbi.nlm.nih.gov/pubmed/26839780</a>.
- 37. Lee AJ, Brenner L, Mourad B, Monteiro C, Vega KJ, Munoz JC. Gastrointestinal Kaposi's sarcoma: Case report and review of the literature. *World Journal of Gastrointestinal Pharmacology and Therapeutics*. 2015;6(3):89-95. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/26261737">http://www.ncbi.nlm.nih.gov/pubmed/26261737</a>.

- 38. Buchbinder A, Friedman-Kien AE. Clinical aspects of epidemic Kaposi's sarcoma. *Cancer Surveys*. 1991;10:39-52. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/1821322">http://www.ncbi.nlm.nih.gov/pubmed/1821322</a>.
- 39. Hengge UR, Ruzicka T, Tyring SK, et al. Update on Kaposi's sarcoma and other HHV8 associated diseases. Part 1: epidemiology, environmental predispositions, clinical manifestations, and therapy. *The Lancet Infectious Diseases*. 2002;2(5):281-292. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/12062994">http://www.ncbi.nlm.nih.gov/pubmed/12062994</a>.
- 40. Sissolak G, Mayaud P. AIDS-related Kaposi's sarcoma: epidemiological, diagnostic, treatment and control aspects in sub-Saharan Africa. *Tropical Medicine & International Health: TM & IH*. 2005;10(10):981-992. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/16185232">http://www.ncbi.nlm.nih.gov/pubmed/16185232</a>.
- 41. Patel S, Xiao P. Primary effusion lymphoma. *Archives of Pathology & Laboratory Medicine*. 2013;137(8):1152-1154. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23899073.
- 42. Pielasinski U, Santonja C, Rodriguez-Pinilla SM, Requena L. Extracavitary primary effusion lymphoma presenting as a cutaneous tumor: a case report and literature review. *Journal of Cutaneous Pathology*. 2014;41(9):745-753. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24917369.
- 43. Courville EL, Sohani AR, Hasserjian RP, Zukerberg LR, Harris NL, Ferry JA. Diverse clinicopathologic features in human herpesvirus 8-associated lymphomas lead to diagnostic problems. *American Journal of Clinical Pathology*. 2014;142(6):816-829. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/25389336">http://www.ncbi.nlm.nih.gov/pubmed/25389336</a>.
- 44. Liao G, Cai J, Yue C, Qing X. Extracavitary/solid variant of primary effusion lymphoma presenting as a gastric mass. *Experimental and Molecular Pathology*. 2015;99(3):445-448. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/26407759">http://www.ncbi.nlm.nih.gov/pubmed/26407759</a>.
- 45. Uldrick TS, Polizzotto MN, Aleman K, et al. Rituximab plus liposomal doxorubicin in HIV-infected patients with KSHV-associated multicentric Castleman disease. *Blood*. 2014;124(24):3544-3552. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/25331113">http://www.ncbi.nlm.nih.gov/pubmed/25331113</a>.
- 46. Soumerai JD, Sohani AR, Abramson JS. Diagnosis and management of Castleman disease. *Cancer Control: Journal of the Moffitt Cancer Center*. 2014;21(4):266-278. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/25310208">http://www.ncbi.nlm.nih.gov/pubmed/25310208</a>.
- 47. Anderson S, Sasson SC, Lee FJ, Cooper W, Larsen S, Garsia R. Episodic fevers and vasodilatory shock mimicking urosepsis in a patient with HIV-associated multicentric Castleman's Disease: a case report. *BMC Infectious Diseases*. 2016;16:53. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26831502.
- 48. Uldrick TS, Wang V, O'Mahony D, et al. An interleukin-6-related systemic inflammatory syndrome in patients co-infected with Kaposi sarcoma-associated herpesvirus and HIV but without Multicentric Castleman disease. *Clinical Infectious Diseases: an Official Publication of the Infectious Diseases Society of America*. 2010;51(3):350-358. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20583924.
- 49. Polizzotto MN, Uldrick TS, Hu D, Yarchoan R. Clinical Manifestations of Kaposi Sarcoma Herpesvirus Lytic Activation: Multicentric Castleman Disease (KSHV-MCD) and the KSHV Inflammatory Cytokine Syndrome. Frontiers in microbiology. 2012;3:73. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/22403576">http://www.ncbi.nlm.nih.gov/pubmed/22403576</a>.
- 50. Polizzotto MN, Uldrick TS, Wyvill KM, et al. Clinical Features and Outcomes of Patients With Symptomatic Kaposi Sarcoma Herpesvirus (KSHV)-associated Inflammation: Prospective Characterization of KSHV Inflammatory Cytokine Syndrome (KICS). *Clinical Infectious Diseases: an Official Publication of the Infectious Diseases Society of America*. 2016;62(6):730-738. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26658701.
- 51. Patel RM, Goldblum JR, Hsi ED. Immunohistochemical detection of human herpes virus-8 latent nuclear antigen-1 is useful in the diagnosis of Kaposi sarcoma. *Modern Pathology: an Official Journal of the United States and Canadian Academy of Pathology, Inc.* 2004;17(4):456-460. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/14990970">http://www.ncbi.nlm.nih.gov/pubmed/14990970</a>.
- 52. Amerson E, Woodruff CM, Forrestel A, et al. Accuracy of Clinical Suspicion and Pathologic Diagnosis of Kaposi Sarcoma in East Africa. *Journal of Acquired Immune Deficiency Syndromes*. 2016;71(3):295-301. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/26452066">http://www.ncbi.nlm.nih.gov/pubmed/26452066</a>.
- 53. Pak F, Mwakigonja AR, Kokhaei P, et al. Kaposi's sarcoma herpesvirus load in biopsies of cutaneous and oral Kaposi's sarcoma lesions. *European Journal of Cancer*. 2007;43(12):1877-1882. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/17627810">http://www.ncbi.nlm.nih.gov/pubmed/17627810</a>.
- 54. Pak F, Pyakural P, Kokhaei P, et al. HHV-8/KSHV during the development of Kaposi's sarcoma: evaluation by polymerase chain reaction and immunohistochemistry. *Journal of Cutaneous Pathology*. 2005;32(1):21-27. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15660651.

- 55. Morrison BJ, Labo N, Miley WJ, Whitby D. Serodiagnosis for tumor viruses. *Seminars in Oncology*. 2015;42(2):191-206. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/25843726">http://www.ncbi.nlm.nih.gov/pubmed/25843726</a>.
- 56. Casper C, Redman M, Huang ML, et al. HIV infection and human herpesvirus-8 oral shedding among men who have sex with men. *Journal of Acquired Immune Deficiency Syndromes*. 2004;35(3):233-238. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/15076237">http://www.ncbi.nlm.nih.gov/pubmed/15076237</a>.
- 57. Johnston C, Orem J, Okuku F, et al. Impact of HIV infection and Kaposi sarcoma on human herpesvirus-8 mucosal replication and dissemination in Uganda. *PloS One*. 2009;4(1):e4222. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/19156206">http://www.ncbi.nlm.nih.gov/pubmed/19156206</a>.
- 58. Phipps W, Saracino M, Selke S, et al. Oral HHV-8 replication among women in Mombasa, Kenya. *Journal of Medical Virology*. 2014;86(10):1759-1765. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24692069.
- 59. Hladik W, Dollard SC, Mermin J, et al. Transmission of human herpesvirus 8 by blood transfusion. *The New England Journal of Medicine*. 2006;355(13):1331-1338. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/17005950">http://www.ncbi.nlm.nih.gov/pubmed/17005950</a>.
- 60. Cannon MJ, Operskalski EA, Mosley JW, Radford K, Dollard SC. Lack of evidence for human herpesvirus-8 transmission via blood transfusion in a historical US cohort. *The Journal of Infectious Diseases*. 2009;199(11):1592-1598. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/19385734">http://www.ncbi.nlm.nih.gov/pubmed/19385734</a>.
- 61. Schennach H, Schonitzer D, Wachter H, Fuchs D. Blood donations and viruses. *Lancet*. 1997;349(9061):1327-1328. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9142092.
- 62. Lodi S, Guiguet M, Costagliola D, et al. Kaposi sarcoma incidence and survival among HIV-infected homosexual men after HIV seroconversion. *Journal of the National Cancer Institute*. 2010;102(11):784-792. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/20442214">http://www.ncbi.nlm.nih.gov/pubmed/20442214</a>.
- 63. Dubrow R, Qin L, Lin H, et al. Association of CD4+ T-cell Count, HIV-1 RNA Viral Load, and Antiretroviral Therapy With Kaposi Sarcoma Risk Among HIV-infected Persons in the United States and Canada. *Journal of Acquired Immune Deficiency Syndromes*. 2017;75(4):382-390. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/28394855">http://www.ncbi.nlm.nih.gov/pubmed/28394855</a>.
- 64. Cianfrocca M, Lee S, Von Roenn J, et al. Randomized trial of paclitaxel versus pegylated liposomal doxorubicin for advanced human immunodeficiency virus-associated Kaposi sarcoma: evidence of symptom palliation from chemotherapy. *Cancer*. 2010;116(16):3969-3977. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20564162.
- 65. Cooley T, Henry D, Tonda M, Sun S, O'Connell M, Rackoff W. A randomized, double-blind study of pegylated liposomal doxorubicin for the treatment of AIDS-related Kaposi's sarcoma. *The Oncologist*. 2007;12(1):114-123. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17227906.
- 66. Cheung TW, Remick SC, Azarnia N, Proper JA, Barrueco JR, Dezube BJ. AIDS-related Kaposi's sarcoma: a phase II study of liposomal doxorubicin. The TLC D-99 Study Group. *Clinical Cancer Research: an Official Journal of the American Association for Cancer Research*. 1999;5(11):3432-3437. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/10589755">http://www.ncbi.nlm.nih.gov/pubmed/10589755</a>.
- 67. Tulpule A, Groopman J, Saville MW, et al. Multicenter trial of low-dose paclitaxel in patients with advanced AIDS-related Kaposi sarcoma. *Cancer*. 2002;95(1):147-154. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/12115328">http://www.ncbi.nlm.nih.gov/pubmed/12115328</a>.
- 68. Volkow PF, Cornejo P, Zinser JW, Ormsby CE, Reyes-Teran G. Life-threatening exacerbation of Kaposi's sarcoma after prednisone treatment for immune reconstitution inflammatory syndrome. *AIDS*. 2008;22(5):663-665. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/18317012">http://www.ncbi.nlm.nih.gov/pubmed/18317012</a>.
- 69. Jinno S, Goshima C. Progression of Kaposi sarcoma associated with iatrogenic Cushing syndrome in a person with HIV/AIDS. *The AIDS Reader*. 2008;18(2):100-104. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/18333287">http://www.ncbi.nlm.nih.gov/pubmed/18333287</a>.
- 70. Trattner A, Hodak E, David M, Sandbank M. The appearance of Kaposi sarcoma during corticosteroid therapy. *Cancer*. 1993;72(5):1779-1783. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/8348508">http://www.ncbi.nlm.nih.gov/pubmed/8348508</a>.
- 71. Hosseini-Moghaddam SM, Soleimanirahbar A, Mazzulli T, Rotstein C, Husain S. Post renal transplantation Kaposi's sarcoma: a review of its epidemiology, pathogenesis, diagnosis, clinical aspects, and therapy. *Transplant Infectious Disease: an Official Journal of the Transplantation Society*. 2012;14(4):338-345. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/22316356">http://www.ncbi.nlm.nih.gov/pubmed/22316356</a>.
- 72. Monaco AP. The role of mTOR inhibitors in the management of posttransplant malignancy. *Transplantation*. 2009;87(2):157-163. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19155967.
- 73. Stock PG, Barin B, Murphy B, et al. Outcomes of kidney transplantation in HIV-infected recipients. The New England

- Journal of Medicine. 2010;363(21):2004-2014. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21083386.
- 74. Kedes DH, Ganem D. Sensitivity of Kaposi's sarcoma-associated herpesvirus replication to antiviral drugs. Implications for potential therapy. *The Journal of Clinical Investigation*. 1997;99(9):2082-2086. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/9151779">http://www.ncbi.nlm.nih.gov/pubmed/9151779</a>.
- 75. Medveczky MM, Horvath E, Lund T, Medveczky PG. In vitro antiviral drug sensitivity of the Kaposi's sarcoma-associated herpesvirus. *AIDS*. 1997;11(11):1327-1332. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/9302441">http://www.ncbi.nlm.nih.gov/pubmed/9302441</a>.
- 76. Little RF, Merced-Galindez F, Staskus K, et al. A pilot study of cidofovir in patients with kaposi sarcoma. *The Journal of Infectious Diseases*. 2003;187(1):149-153. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/12508160">http://www.ncbi.nlm.nih.gov/pubmed/12508160</a>.
- 77. Krown SE, Dittmer DP, Cesarman E. Pilot study of oral valganciclovir therapy in patients with classic Kaposi sarcoma. *The Journal of Infectious Diseases*. 2011;203(8):1082-1086. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/21450998">http://www.ncbi.nlm.nih.gov/pubmed/21450998</a>.
- 78. Luppi M, Barozzi P, Rasini V, et al. Severe pancytopenia and hemophagocytosis after HHV-8 primary infection in a renal transplant patient successfully treated with foscarnet. *Transplantation*. 2002;74(1):131-132. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/12134112">http://www.ncbi.nlm.nih.gov/pubmed/12134112</a>.
- 79. Low P, Neipel F, Rascu A, et al. Suppression of HHV-8 viremia by foscarnet in an HIV-infected patient with Kaposi's sarcoma and HHV-8 associated hemophagocytic syndrome. *European Journal of Medical Research*. 1998;3(10):461-464. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9753702.
- 80. Boulanger E, Gerard L, Gabarre J, et al. Prognostic factors and outcome of human herpesvirus 8-associated primary effusion lymphoma in patients with AIDS. *Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology.* 2005;23(19):4372-4380. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/15994147">http://www.ncbi.nlm.nih.gov/pubmed/15994147</a>.
- 81. Barta SK, Lee JY, Kaplan LD, Noy A, Sparano JA. Pooled analysis of AIDS malignancy consortium trials evaluating rituximab plus CHOP or infusional EPOCH chemotherapy in HIV-associated non-Hodgkin lymphoma. *Cancer*. 2012;118(16):3977-3983. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/22180164">http://www.ncbi.nlm.nih.gov/pubmed/22180164</a>.
- 82. Lim ST, Rubin N, Said J, Levine AM. Primary effusion lymphoma: successful treatment with highly active antiretroviral therapy and rituximab. *Annals of Hematology*. 2005;84(8):551-552. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/15800785">http://www.ncbi.nlm.nih.gov/pubmed/15800785</a>.
- 83. Jessamy K, Ojevwe FO, Doobay R, Naous R, Yu J, Lemke SM. Primary Effusion Lymphoma: Is Dose-Adjusted-EPOCH Worthwhile Therapy? *Case Reports in Oncology*. 2016;9(1):273-279. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/27462227">http://www.ncbi.nlm.nih.gov/pubmed/27462227</a>.
- 84. Crum-Cianflone NF, Wallace MR, Looney D. Successful secondary prophylaxis for primary effusion lymphoma with human herpesvirus 8 therapy. *AIDS*. 2006;20(11):1567-1569. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/16847420">http://www.ncbi.nlm.nih.gov/pubmed/16847420</a>.
- 85. Pereira R, Carvalho J, Patricio C, Farinha P. Sustained complete remission of primary effusion lymphoma with adjunctive ganciclovir treatment in an HIV-positive patient. *BMJ Case Reports*. 2014;2014. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/25312890">http://www.ncbi.nlm.nih.gov/pubmed/25312890</a>.
- 86. Oksenhendler E, Clauvel JP, Jouveshomme S, Davi F, Mansour G. Complete remission of a primary effusion lymphoma with antiretroviral therapy. *American Journal of Hematology*. 1998;57(3):266. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/9495391">http://www.ncbi.nlm.nih.gov/pubmed/9495391</a>.
- 87. Casper C, Nichols WG, Huang ML, Corey L, Wald A. Remission of HHV-8 and HIV-associated multicentric Castleman disease with ganciclovir treatment. *Blood*. 2004;103(5):1632-1634. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/14615380">http://www.ncbi.nlm.nih.gov/pubmed/14615380</a>.
- 88. Uldrick TS, Polizzotto MN, Aleman K, et al. High-dose zidovudine plus valganciclovir for Kaposi sarcoma herpesvirus-associated multicentric Castleman disease: a pilot study of virus-activated cytotoxic therapy. *Blood*. 2011;117(26):6977-6986. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/21487108">http://www.ncbi.nlm.nih.gov/pubmed/21487108</a>.
- 89. Bower M, Newsom-Davis T, Naresh K, et al. Clinical Features and Outcome in HIV-Associated Multicentric Castleman's Disease. *Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology*. 2011;29(18):2481-2486. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21555697.
- 90. Marcelin AG, Aaron L, Mateus C, et al. Rituximab therapy for HIV-associated Castleman disease. *Blood*. 2003;102(8):2786-2788. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12842986.

- 91. Gerard L, Berezne A, Galicier L, et al. Prospective study of rituximab in chemotherapy-dependent human immunodeficiency virus associated multicentric Castleman's disease: ANRS 117 CastlemaB Trial. *Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology*. 2007;25(22):3350-3356. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/17664482">http://www.ncbi.nlm.nih.gov/pubmed/17664482</a>.
- 92. Bower M, Powles T, Williams S, et al. Brief communication: rituximab in HIV-associated multicentric Castleman disease. *Annals of Internal Medicine*. 2007;147(12):836-839. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/18087054">http://www.ncbi.nlm.nih.gov/pubmed/18087054</a>.
- 93. Nishimoto N, Kanakura Y, Aozasa K, et al. Humanized anti-interleukin-6 receptor antibody treatment of multicentric Castleman disease. *Blood.* 2005;106(8):2627-2632. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/15998837">http://www.ncbi.nlm.nih.gov/pubmed/15998837</a>.
- 94. Nagao A, Nakazawa S, Hanabusa H. Short-term efficacy of the IL6 receptor antibody tocilizumab in patients with HIV-associated multicentric Castleman disease: report of two cases. *Journal of Hematology & Oncology*. 2014;7:10. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/24438824">http://www.ncbi.nlm.nih.gov/pubmed/24438824</a>.
- 95. van Rhee F, Fayad L, Voorhees P, et al. Siltuximab, a novel anti-interleukin-6 monoclonal antibody, for Castleman's disease. *Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology.* 2010;28(23):3701-3708. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20625121.
- 96. From RP, Mehta MP, Pathak D. Serum potassium concentrations following succinylcholine in patients undergoing beta-adrenoceptor blocking therapy. *Journal of Clinical Anesthesia*. 1989;1(5):350-353. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/2576378">http://www.ncbi.nlm.nih.gov/pubmed/2576378</a>.
- 97. Letang E, Lewis JJ, Bower M, et al. Immune reconstitution inflammatory syndrome associated with Kaposi sarcoma: higher incidence and mortality in Africa than in the UK. *AIDS*. 2013;27(10):1603-1613. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/23462220">http://www.ncbi.nlm.nih.gov/pubmed/23462220</a>.
- 98. Bower M, Nelson M, Young AM, et al. Immune reconstitution inflammatory syndrome associated with Kaposi's sarcoma. *Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology*. 2005;23(22):5224-5228. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/16051964">http://www.ncbi.nlm.nih.gov/pubmed/16051964</a>.
- 99. Achenbach CJ, Harrington RD, Dhanireddy S, Crane HM, Casper C, Kitahata MM. Paradoxical immune reconstitution inflammatory syndrome in HIV-infected patients treated with combination antiretroviral therapy after AIDS-defining opportunistic infection. *Clinical Infectious Diseases: an Official Publication of the Infectious Diseases Society of America*. 2012;54(3):424-433. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22095568.
- 100. Mosam A, Shaik F, Uldrick TS, et al. A randomized controlled trial of highly active antiretroviral therapy versus highly active antiretroviral therapy and chemotherapy in therapy-naive patients with HIV-associated Kaposi sarcoma in South Africa. *Journal of Acquired Immune Deficiency Syndromes*. 2012;60(2):150-157. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/22395672">http://www.ncbi.nlm.nih.gov/pubmed/22395672</a>.
- 101. Borok M, Fiorillo S, Gudza I, et al. Evaluation of plasma human herpesvirus 8 DNA as a marker of clinical outcomes during antiretroviral therapy for AIDS-related Kaposi sarcoma in Zimbabwe. *Clinical Infectious Diseases: an Official Publication of the Infectious Diseases Society of America*. 2010;51(3):342-349. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/20572760">http://www.ncbi.nlm.nih.gov/pubmed/20572760</a>.
- 102. Letang E, Almeida JM, Miro JM, et al. Predictors of immune reconstitution inflammatory syndrome-associated with kaposi sarcoma in mozambique: a prospective study. *Journal of Acquired Immune Deficiency Syndromes*. 2010;53(5):589-597. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19801945.
- 103. Chabria S, Barakat L, Ogbuagu O. Steroid-exacerbated HIV-associated cutaneous Kaposi's sarcoma immune reconstitution inflammatory syndrome: 'Where a good intention turns bad'. *International journal of STD & AIDS*. 2016;27(11):1026-1029. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/26769754">http://www.ncbi.nlm.nih.gov/pubmed/26769754</a>.
- 104. Aaron L, Lidove O, Yousry C, Roudiere L, Dupont B, Viard JP. Human herpesvirus 8-positive Castleman disease in human immunodeficiency virus-infected patients: the impact of highly active antiretroviral therapy. *Clinical Infectious Diseases: an Official Publication of the Infectious Diseases Society of America*. 2002;35(7):880-882. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/12228826">http://www.ncbi.nlm.nih.gov/pubmed/12228826</a>.
- 105. Achenbach C, Kitahata MM. Recurrence or Worsening of AIDS-defining Opportunistic Infection (OI) due to Immune Reconstitution Inflammatory Syndrome (IRIS) During Inititial HAART Among a Clinic-Based Population. Presented at: 48th ICAAC/IDSA 46th Annual Meeting; 2008; Washington, DC.
- 106. Goedert JJ, Kedes DH, Ganem D. Antibodies to human herpesvirus 8 in women and infants born in Haiti and the USA. *Lancet.* 1997;349(9062):1368. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/9149705">http://www.ncbi.nlm.nih.gov/pubmed/9149705</a>.

- 107. Huang LM, Huang SY, Chen MY, et al. Geographical differences in human herpesvirus 8 seroepidemiology: a survey of 1,201 individuals in Asia. *Journal of Medical Virology*. 2000;60(3):290-293. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/10630961">http://www.ncbi.nlm.nih.gov/pubmed/10630961</a>.
- 108. Lisco A, Barbierato M, Fiore JR, et al. Pregnancy and human herpesvirus 8 reactivation in human immunodeficiency virus type 1-infected women. *Journal of Clinical Microbiology*. 2006;44(11):3863-3871. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/16943357">http://www.ncbi.nlm.nih.gov/pubmed/16943357</a>.
- 109. Adeyemo A, Wood C, Govind A. Kaposi's sarcoma in pregnancy after initiation of highly active antiretroviral therapy: a manifestation of immune reconstitution syndrome. *International Journal of STD & AIDS*. 2012;23(12):905-906. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/23258835">http://www.ncbi.nlm.nih.gov/pubmed/23258835</a>.
- 110. Berger P, Dirnhofer S. Kaposi's sarcoma in pregnant women. *Nature*. 1995;377(6544):21-22. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/7659155">http://www.ncbi.nlm.nih.gov/pubmed/7659155</a>.
- 111. Lunardi-Iskandar Y, Bryant JL, Zeman RA, et al. Tumorigenesis and metastasis of neoplastic Kaposi's sarcoma cell line in immunodeficient mice blocked by a human pregnancy hormone. *Nature*. 1995;375(6526):64-68. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/7723844">http://www.ncbi.nlm.nih.gov/pubmed/7723844</a>.
- 112. Rabkin CS, Chibwe G, Muyunda K, Musaba E. Kaposi's sarcoma in pregnant women. *Nature*. 1995;377(6544):21; author reply 22. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7659154.
- 113. Schulz TF, Weiss RA. Kaposi's sarcoma. A finger on the culprit. *Nature*. 1995;373(6509):17-18. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/7800029">http://www.ncbi.nlm.nih.gov/pubmed/7800029</a>.
- 114. Gutierrez-Ortega P, Hierro-Orozco S, Sanchez-Cisneros R, Montano LF. Kaposi's sarcoma in a 6-day-old infant with human immunodeficiency virus. *Archives of Dermatology*. 1989;125(3):432-433. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/2923454">http://www.ncbi.nlm.nih.gov/pubmed/2923454</a>.
- 115. McCarthy GA, Kampmann B, Novelli V, Miller RF, Mercey DE, Gibb D. Vertical transmission of Kaposi's sarcoma. *Archives of Disease in Childhood*. 1996;74(5):455-457. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/8669966">http://www.ncbi.nlm.nih.gov/pubmed/8669966</a>.
- 116. Sitas F, Newton R, Boshoff C. Increasing probability of mother-to-child transmission of HHV-8 with increasing maternal antibody titer for HHV-8. *The New England Journal of Medicine*. 1999;340(24):1923. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/10375309">http://www.ncbi.nlm.nih.gov/pubmed/10375309</a>.
- 117. Mbulaiteye S, Marshall V, Bagni RK, et al. Molecular evidence for mother-to-child transmission of Kaposi sarcoma-associated herpesvirus in Uganda and K1 gene evolution within the host. *The Journal of Infectious Diseases*. 2006;193(9):1250-1257. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16586362.
- 118. Mantina H, Kankasa C, Klaskala W, et al. Vertical transmission of Kaposi's sarcoma-associated herpesvirus. *International Journal of Cancer Journal International du Cancer*. 2001;94(5):749-752. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/11745472">http://www.ncbi.nlm.nih.gov/pubmed/11745472</a>.
- 119. Serraino D, Locatelli M, Songini M, et al. Human herpes virus-8 infection among pregnant women and their children: results from the Sardinia-IDDM Study 2. *International Journal of Cancer Journal International du Cancer*. 2001;91(5):740-741. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/11267990">http://www.ncbi.nlm.nih.gov/pubmed/11267990</a>.
- 120. Gessain A, Mauclere P, van Beveren M, et al. Human herpesvirus 8 primary infection occurs during childhood in Cameroon, Central Africa. *International Journal of Cancer Journal International du Cancer*. 1999;81(2):189-192. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/10188717">http://www.ncbi.nlm.nih.gov/pubmed/10188717</a>.
- 121. Bourboulia D, Whitby D, Boshoff C, et al. Serologic evidence for mother-to-child transmission of Kaposi sarcoma-associated herpesvirus infection. *JAMA*. 1998;280(1):31-32. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/9660357">http://www.ncbi.nlm.nih.gov/pubmed/9660357</a>.
- 122. Whitby D, Smith NA, Matthews S, et al. Human herpesvirus 8: seroepidemiology among women and detection in the genital tract of seropositive women. *The Journal of Infectious Diseases*. 1999;179(1):234-236. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/9841845">http://www.ncbi.nlm.nih.gov/pubmed/9841845</a>.
- 123. Plancoulaine S, Abel L, van Beveren M, et al. Human herpesvirus 8 transmission from mother to child and between siblings in an endemic population. *Lancet*. 2000;356(9235):1062-1065. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/11009141">http://www.ncbi.nlm.nih.gov/pubmed/11009141</a>.
- 124. Krown SE, Metroka C, Wernz JC. Kaposi's sarcoma in the acquired immune deficiency syndrome: a proposal for uniform evaluation, response, and staging criteria. AIDS Clinical Trials Group Oncology Committee. *Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology.* 1989;7(9):1201-1207. Available at: <a href="http://www.ncbi.nlm.nih.gov/pubmed/2671281">http://www.ncbi.nlm.nih.gov/pubmed/2671281</a>.